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Abstract

The exact dynamic stiffness method is further extended, using a recently developed approach for vibration of

Bernoulli–Euler members, to flexural free vibration of non-uniform Timoshenko beams with gradual or stepwise non-

uniformity of geometric and/or material properties and to Euler buckling of similarly non-uniform columns. Two key

strategies are emphasized: (i) formulation of the governing ordinary differential equations (ODE) for dynamic stiffnesses

and their derivatives and the solution of the ODE problem by standard ODE solvers; and (ii) establishment of mesh

generation rules for the two problems. Extension of the method to three-dimensional frames with non-uniform members

poses no major theoretical hurdles. Numerical examples, including challenging problems, are given to show the

effectiveness, efficiency, accuracy and reliability of the proposed method which, unlike the finite element method, is exact

and so can be iterated until any preset accuracy is achieved.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Theory used

When using exact methods for undamped free vibration of structures, the generalized linear eigenproblem
ðK� lMÞD ¼ 0 of approximate methods such as the finite element method (FEM) is replaced by the
transcendental eigenproblem [1,2]

KðlÞD ¼ 0. (1)

Here, l ¼ o2; o is the circular frequency; D is the displacement amplitude vector (simply called the mode
vector in the following) and so must be multiplied by sinðotÞ to obtain the displacements; M and K are the
mass and static stiffness matrices; and K(l) is the dynamic stiffness matrix. The coefficients of K(l) are
transcendental functions involving l and mass because the members of the structure are analysed exactly by
solving their governing differential equations. Note that this formulation, and the Wittrick–Williams (W–W)
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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algorithm referred to next, cover the full range of members for which transcendental member equations are
available but that in this paper the word ‘member’ is used more restrictively to mean a beam in vibration
problems or a column in buckling ones.

It was shown in a recent paper [3] that the natural frequencies and modes can be found with absolute
certainty and to almost machine accuracy by a method which uses the W–W algorithm [1,2] in conjunction
with a form of inverse iteration. This method, after slight modification to use l rather than o as the
eigenparameter [4], requires as its raw material K(l) and its first derivative with respect to l, namely
K̂ðlÞ ¼ dK̂ðlÞ=dl, plus a quantity J which is equal to the number of natural frequencies exceeded by any trial
value of l, denoted by l*. (Note that prime is not used to denote the derivative here because later it is used
to denote differentiation with respect to x.) J is computed from a property of K(l*) and from Jm for
every member, where Jm is the number of natural frequencies of the member which would lie below l* if its
ends were both fully clamped. K(l) and K̂ðlÞ are respectively assembled from the member flexural stiffnesses kij

(i, j ¼ 1, 2, 3, 4) of all component members of the structure, plus their axial stiffnesses, and from their
derivatives k̂ij with respect to l. This use of kij and k̂ij , plus the computation of Jm, forms the only member
information required by the recent inverse iteration method [3,4] and hence the method can be applied when
using any type of member for which kij ; k̂ij and Jm can be computed and for which the axial and flexural
behaviours are uncoupled.

1.2. Introduction to method presented

The method includes a check that no fixed-end eigenvalue of any member lies very close to l*, as otherwise
the k̂ij could become excessively numerically large and hence potentially make the inverse iteration method
unstable. When this check is violated, an interior node is inserted into the member and is located such that the
two sub-members thus formed both pass this check. Such interior nodes must also be placed wherever there is
a stepped non-uniformity of the member.

The first and primary objective of the present paper is to introduce a numerical ordinary differential
equation (ODE) solver in order to find the kij and k̂ij of isolated vibrating Timoshenko beams with gradual or
stepwise non-uniformity of geometric and/or material properties. For such members it is no longer easy to
calculate Jm from an explicit formula. Therefore the previously applied ‘necessary and sufficient’ condition for
ensuring that the k̂ij do not become excessive, namely ensuring that no fixed-end eigenvalue lies very close to
l*, is replaced by a strategy which ensures that the square of the lowest fixed-end natural frequency of the non-
uniform member, denoted by lF, lies above l*, so that Jm ¼ 0 and hence the quantity J0 [3] needed by the
W–W algorithm is zero. This is achieved by developing a method which makes sure that sufficient interior
nodes are introduced to ensure that the sub-members into which they divide the member all have lF4l*. In
this paper, the sub-members are called elements and the interior nodes are called mesh points. Hence one of
the most important contributions of the present paper is that it introduces a criterion for ensuring that lF4l*
for all of the Timoshenko elements, after first showing how to compute their kij and k̂ij. It also solves some
examples which confirm the efficiency and the very high accuracy of the method, which is essentially exact if
an adaptive ODE solver is used properly. (Exceptionally, a non-uniform member may contain long uniform
portions, so that one or more elements may be uniform. Extra care is then needed as very exceptionally
the condition lF4l* may result in lFffil* and so cause ill-conditioning. This difficulty is easily overcome
in several ways, one of which is to modify the condition to lF4(1+e)l*, where e is a suitable small number,
e.g. 0.01 or 0.05.)

The second objective of the paper is to present a method for buckling of non-uniform columns which
follows the same route as that described above for vibration of such members. This is possible because the
close analogy between vibration and buckling enables the previously presented method [3,4] for vibration
problems to be readily adapted to solve critical buckling problems. Moreover, essentially everything said thus
far in this paper applies also to buckling problems if l is interpreted as the axial force, the squares of natural
frequencies become critical buckling loads, M becomes the geometric stiffness matrix and ‘dynamic stiffnesses’
are replaced by their equivalents for buckling problems, which are widely known as ‘stability functions’.
However, for practical rather than fundamental reasons, and because it is only secondary in this paper, the
detailed working for buckling has only been done for Bernoulli–Euler columns and not for Timoshenko ones,
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i.e. shear deflection is ignored. Thus the presented method includes a method for finding the kij and k̂ij, plus a
guarantee that elements all have lF4l*, for flexure of a static non-uniform Bernoulli–Euler beam with a
compressive force P, which may be positive, zero or negative.

Note that axial vibration of non-uniform beams involves a second-order Sturm-Liouville (SL) problem for
which several general codes are available, e.g. SLEDGE [5], SLEIGN [6] and the NAG library [7]. Similarly
the more challenging fourth-order SL problem can be solved by SLEUTH [8] and this is sufficient for
vibrating non-uniform Bernoulli–Euler beams. However, the governing differential equations for flexure of
the two types of member described in this paper are not SL ones, which is one of the reasons for choosing them
in this paper. In this paper, the linear ODE boundary value problems (BVP) yielded by fixing l ¼ l* are
instead solved by any available and reliable standard ODE solver, with COLSYS [9] being used exclusively in
this paper. Hence the stiffness derivatives k̂ijð¼ k̂ijðl

�
ÞÞ are calculated by differentiating the governing ODE for

kij with respect to l at l ¼ l* to obtain a new linear ODE problem, which can be solved to obtain the k̂ij in the
same easy way as that used to calculate the kij.

Note both that COLSYS uses spline collocation at Gaussian points to directly solve ODE systems of first to
fourth order and also that its meshes are automatically generated and adapted according to error distributions
until the user pre-specified error tolerance is satisfied. Although this is not a closed form solution it is
numerically exact so long as the flexural rigidity and mass per unit length vary smoothly along members.

The theory currently presented and the associated software are specifically for the chain of collinear non-
uniform elements required to assemble a single non-uniform member, which requires the following derivations
of the exact member flexural stiffness matrices of the vibrating Timoshenko beam and the static
Bernoulli–Euler column. However, it must be emphasised that the ultimate motivation is the calculation of
the natural frequencies or critical buckling loads of three-dimensional frameworks of any geometry which
contain non-uniform members, with an emphasis on the associated modes being found to high accuracy. The
hardest step in the theory for such frameworks is the derivation of the exact member flexural stiffness matrices
given in the next two sections. The remaining theory needed for the solution of three-dimensional frameworks
comprising members with uncoupled flexural, axial and torsional behaviour is much simpler, e.g. it is
necessary: to derive exact member axial stiffness matrices; to superpose flexure in two principal planes with the
axial and torsional equations to obtain the required member equations; and to perform a standard
transformation to resolve member end displacements and forces into a global axis system, exactly as in the
application of the stiffness matrix method to standard finite element problems.

2. Exact flexural stiffness matrix and its derivative for vibrating non-uniform Timoshenko beams

The stiffnesses kij (i, j ¼ 1, 2, 3, 4) for flexural vibration of a non-uniform Timoshenko member (or element)
are calculated by solving the following second-order linear ODE BVP of Eq. (2) subject to the four sets of
boundary conditions (BCs) of Eq. (3):

d

dx
EIðxÞ

dc
dx

� �
þ kGAðxÞ

dv

dx
� c

� �
þ l�ImðxÞc ¼ 0

d

dx
kGAðxÞ

dv

dx
� c

� �� �
þ l�mðxÞv ¼ 0

9>>>=
>>>;
; 0oxoL, (2)

j ¼ 1 : vjð0Þ ¼ 1; cjð0Þ ¼ 0; vjðLÞ ¼ 0; cjðLÞ ¼ 0, (3a)

j ¼ 2 : vjð0Þ ¼ 0; cjð0Þ ¼ 1; vjðLÞ ¼ 0; cjðLÞ ¼ 0, (3b)

j ¼ 3 : vjð0Þ ¼ 0; cjð0Þ ¼ 0; vjðLÞ ¼ 1; cjðLÞ ¼ 0, (3c)

j ¼ 4 : vjð0Þ ¼ 0; cjð0Þ ¼ 0; vjðLÞ ¼ 0; cjðLÞ ¼ 1. (3d)

Here (x) denotes variation with the longitudinal coordinate x; L is the member length; v(x) and c(x) (or just
v and c) are the amplitudes of, respectively, the lateral deflection and cross-section rotation; EI(x) and GA(x)
are, respectively, the flexural and shear rigidities; m(x) and Im(x) are, respectively, the mass and rotary inertia
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per unit length; and k is the standard cross-section constant, which is given its usual value for rectangular
cross-sections of 5/6 in the numerical examples of this paper. Note that the ODE problem consists of a set of
two differential equations rather than the single equation needed for vibration of Bernoulli–Euler members.

After the solutions have been obtained for j ¼ 1, 2, 3, and 4, the dynamic stiffnesses can readily be
calculated from

k1j ¼ �kGA
dvj

dx
� cj

� �����
0

; k2j ¼ �EI
dcj

dx

����
0

k3j ¼ kGA
dvj

dx
� cj

� �����
L

; k4j ¼ EI
dcj

dx

����
L

9>>>=
>>>;
; j ¼ 1; 2; 3; 4. (4)

The k̂ijði; j ¼ 1; 2; 3; 4Þ are then obtained by letting v̂ ¼ qv=ql and ĉ ¼ qc=ql, so that differentiating Eqs. (2)
and (3) with respect to l gives

d

dx
EIðxÞ

dĉj

dx

 !
þ kGAðxÞ

dv̂j

dx
� ĉj

� �
þ l�ImðxÞĉj ¼ �ImðxÞcj

d

dx
kGAðxÞ

dv̂j

dx
� ĉj

� �� �
þ l�mðxÞv̂j ¼ �mðxÞvj

9>>>>=
>>>>;
; 0oxoL;

v̂jð0Þ ¼ 0; ĉjð0Þ ¼ 0; v̂jðLÞ ¼ 0; ĉjðLÞ ¼ 0; j ¼ 1; 2; 3; 4:

(5)

Note that the vj(x) and cj(x) have already been obtained when solving Eqs. (2) and (3). Hence the
derivatives of the dynamic stiffnesses are readily calculated from

k̂1j ¼ �kGA
dv̂j

dx
� ĉj

� �����
0

; k̂2j ¼ �EI
dĉj

dx

�����
0

k̂3j ¼ kGA
dv̂j

dx
� ĉj

� �����
L

; k̂4j ¼ EI
dĉj

dx

�����
L

9>>>>>=
>>>>>;
; j ¼ 1; 2; 3; 4. (6)
3. Exact static flexural stiffness matrix and its derivative for axially loaded non-uniform Bernoulli–Euler

members

The stiffnesses kij ði; j ¼ 1; 2; 3; 4Þ for flexure of an axially compressed non-uniform Bernoulli–Euler member
are calculated by solving the fourth-order linear ODE BVP of Eq. (7) subject to the four sets of BCs of Eq. (8),
where

d2

dx2
EIðxÞ

d2v xð Þ

dx2

� �
þ P0l

� d
2v xð Þ

dx2
¼ 0; 0oxoL, (7)

j ¼ 1 : vjð0Þ ¼ 1; v0jð0Þ ¼ 0; vjðLÞ ¼ 0; v0jðLÞ ¼ 0, (8a)

j ¼ 2 : vjð0Þ ¼ 0; v0jð0Þ ¼ 1; vjðLÞ ¼ 0; v0jðLÞ ¼ 0, (8b)

j ¼ 3 : vjð0Þ ¼ 0; v0jð0Þ ¼ 0; vjðLÞ ¼ 1; v0jðLÞ ¼ 0, (8c)

j ¼ 4 : vjð0Þ ¼ 0; v0jð0Þ ¼ 0; vjðLÞ ¼ 0; v0jðLÞ ¼ 1. (8d)

Here vj(x) is the lateral displacement, EI(x) is the flexural rigidity, P0 is a datum value of axial compression,
and prime denotes differentiation with respect to x. After the solutions for vj(x) have been obtained for
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j ¼ 1; 2; 3 and 4, the buckling stiffnesses can readily be calculated from

k1j ¼ ðEIv
00
j Þ
0
���
0
; k2j ¼ �EIv

00
j

���
0
; k3j ¼ �ðEIv

00
j Þ
0
���
L
; k4j ¼ EIv00j

���
L
; j ¼ 1; 2; 3; 4. (9)

The k̂ijði; j ¼ 1; 2; 3; 4Þ are obtained by letting v̂ ¼ qv=ql and then differentiating Eqs. (7) and (8) with respect
to l to obtain

d2

dx2
EIðxÞ

d2v̂jðxÞ

dx2

 !
þ P0l

� d
2v̂jðxÞ

dx2
¼ �P0

d2vjðxÞ

dx2
,

v̂jð0Þ ¼ 0; v̂0jð0Þ ¼ 0; v̂jðLÞ ¼ 0; v̂0jðLÞ ¼ 0. ð10Þ

Note that the vj(x) have already been obtained when solving Eqs. (7) and (8). Hence the derivatives of the
load-dependent static stiffnesses are readily calculated from

k̂1j ¼ ðEIv̂
00
j Þ
0
���
0
; k̂2j ¼ �EIv̂

00
j

���
0
; k̂3j ¼ �ðEIv̂

00
j Þ
0
���
L
; k̂4j ¼ EIv̂00j

���
L
; j ¼ 1; 2; 3; 4. (11)

4. Choice of element lengths

For buckling of uniform clamped ended Bernoulli–Euler struts it is very well known that P ¼ 4p2EI/l2, where
l is the length of the element. By assuming a datum axial force of unity it is permissible to replace P by lF and
hence the previously established requirement lFXlu gives the upper bound on the permissible element length as

l ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
EI=lu

p
. (12)

Because increasing EI(x) must increase lF or leave it unaltered, it follows that for the non-uniform element
the value of l given by substituting the lowest value of EI(x) anywhere within l into Eq. (12) forms a lower
bound on the maximum value of l that satisfies lFXlu. Note that the procedure for determining l is iterative,
because l must be known in order to find the lowest EI(x) within l. Hence using this method for each element
except the last one in turn, starting from the left-hand one, gives the positions of all mesh points, although it
may be necessary to increase the final element length if it is too short (i.e. it could cause ill-conditioning) by
moving the mesh point at its left-hand end an appropriate amount to its left.

A formula for the lowest natural frequency oF of a clamped-ended vibrating Timoshenko beam is given in
the literature [10]. Additionally, it is a well-established fact that, for any structure, reducing stiffness or adding
mass reduces natural frequencies, and hence lF. Thus a procedure similar to that given above can be used, by
using the formula for oF with EI ¼ EImin, GA ¼ GAmin, m ¼ mmax and Im ¼ (Im)max, where subscript min
(max) denotes the minimum (maximum) value within the length l.

The above forms an important contribution of this paper because it gives the key points of how element
lengths, and hence the positions of the mesh points, are found. These key points leave some flexibility over
exactly where the mesh points are, because no rule is stated over how the mesh point positions are altered
when the rightmost element would otherwise be unacceptably short. Several rules are possible, but the
computer program used to obtain the results given in Section 6 below simply did nothing because it worked
without difficulty.

Before proceeding it is worth noting that although the number of ODEs is increased as the number of
elements increases, these ODEs become easier to solve by the numerical procedure of this paper, because as the
elements become shorter their displacements vary less severely. Hence the total computing time may not
necessarily increase greatly.

5. Additional theory and information

The axial stiffnesses of the non-uniform beam, both for the vibrating Timoshenko beam and for the axially
loaded Bernoulli–Euler beam, are easily obtainable by procedures similar to those used above to find their
flexural stiffnesses. It is then possible to set up the K(l) of Eq. (1) for any chosen plane frame and hence to find



ARTICLE IN PRESS
S. Yuan et al. / Journal of Sound and Vibration 303 (2007) 526–537 531
the kth natural frequency lk and the associated mode D of Eq. (1) by using the recursive inverse iteration
procedure of Refs. [3,4]. The member-end displacements are now known via D. Therefore, the mode shape on
the member can be obtained by solving the same ODEs as in Eqs. (2) or (7), with l* being the obtained
eigenvalue and the BCs being set to conform to the member-end displacements.

The theory and discussion given above enables the complete method to be presented for computation of a
specified number Nf of the leading natural frequencies and associated vibration modes of non-uniform
members. The two main contributions of this paper are that the above text has: (i) formulated the ODEs for
dynamic stiffnesses of non-uniform members and their derivatives (or their buckling counterparts) and solved
them; and (ii) established mesh generation rules for the two problems. Although these are substantial
contributions, the algorithm needed to implement them in computer codes has many similarities to that for
uniform members in Ref. [3] and so instead of giving the complete algorithm again here only the following
differences are mentioned:
(1)
Fig.

h=L

b=L

soid

Eule
The member stiffness and its derivative matrices are computed by solving the governing ODE BVP of each
of its elements by using an ODE solver instead of by using closed form formulae.
(2)
 Different mesh point locations are automatically and adaptively generated for different order frequencies,
with the exception of any interior nodes needed to avoid the complete non-uniform member from having a
clamped ended eigenvalue very close to lu.
(3)
 Jm is assured to vanish for all elements.
For the complete algorithm, readers are referred to Ref. [3]. Once again the algorithm has been found to
work very well and its performance is illustrated by the numerical examples given in the next section.

6. Numerical examples

This section presents five numerical examples showing the excellent performance of the proposed algorithm,
which has been implemented in a Fortran 90 program for calculating the flexural vibration of non-uniform
Timoshenko beams and the buckling of non-uniform Bernoulli–Euler beams. For greater generality, the
examples are presented in dimensionless form. Computation used about 14 decimal digits for floating point
number calculations and the error tolerance on the eigenvalues and mode vectors was set to 10�8 throughout.

6.1. The three flexural vibration examples and features shared by their solutions

Figs. 1(a)–(c) fully define Examples 1–3 for flexural vibration of Timoshenko beams. Thus the variations
with x of A(x) and I(x) for Example 2 are

AðxÞ=L2 ¼ 0:06f1� ðx=2LÞg; IðxÞ=L4 ¼ 8� 10�4f1� ðx=2LÞg3, (13)
L 

I, A, �, E h
b

I 
I 

I – I
L

x h(x)

b

I 

I 
I – I

Lx 
λ

EI (x)

1. (a) Example 1: simply supported/simply supported uniform Timoshenko beam with rectangular cross-section, b=L ¼ 0:1;
¼ Z; Z ¼ 10�1 or 10�6. (b) Example 2: cantilevered and linearly tapered Timoshenko beam with rectangular cross-section,

¼ 0:15; hðxÞ=L ¼ 0:4f1� ðx=2LÞg. (c) Example 3: clamped/clamped Timoshenko beam with rectangular cross-section and sinu-

ally varying height, b=L ¼ 0:15; hðxÞ=L ¼ 0:2f1þ 0:5 sinð10x=LÞg. (d) Example 4: simply supported/simply supported Bernoulli–

r column, EIðxÞ ¼ EI0ð1þ x=LÞ4. For Examples 1–3, k ¼ 5/6 and G/E ¼ 0.4.
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whereas for Example 3 they are

AðxÞ=L2 ¼ 0:03f1þ 0:5 sinð10x=LÞg; I xð Þ=L4 ¼ 10�4f1þ 0:5 sinð10x=LÞg3. (14)

The first ten natural frequencies and modes were computed for the two cases Z ¼ 10�1 and 10�6 of
Example 1, whereas the first fifty of each were computed for Examples 2 and 3. The Z ¼ 10�6 case was
included to illustrate that the present method is not affected by the so-called shear-locking problem at all. The
beam was divided into ng intervals of equal length L/ng for rigidity and mass value searching, with ng ¼ 200 for
Example 1 and ng ¼ 500 for Examples 2 and 3. The initial trial value was ‘randomly’ set to

o� ¼ 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2=12rL4

q
for Example 1 and to o� ¼ 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rL2

q
for Examples 2 and 3. (Because these trial

values are not strictly random, Example 1 was re-run with o* set to one tenth of the value above and the errors
recorded in Table 1 below were altered negligibly.)

6.2. Presentation and discussion of results for the vibration examples

Analytical results for the kth natural frequency and mode function of Example 1 are given [10] by solving
the first line of Eq. (15) to find bk and then substituting it into the remaining three rows

bkffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z4

36
þ

4

b2
k

svuut ¼ kp,

ok ¼ bk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2

12rL4

s
,

ckðxÞ ¼ cosðkpx=LÞ,

vkðxÞ ¼ kp
k2p2

b2
k

�
Z2

12

 !
L sinðkpx=LÞ. ð15Þ

Exact results from Eq. (15) were calculated by using the symbolic software Maple with fifty decimal digits.
The first ten of these natural frequencies are given in Table 1 and the errors of the results given by the

present method relative to these and to the corresponding exact modes are also included in Table 2. The
relative error between the calculated natural frequency o and the exact value ok was calculated as

�o ¼
o� ok

ok

����
����. (16)
Table 1

Computed results for the flexural vibration of Example 1

k ok C
ffiffiffiffiffiffiffiffiffiffi

Eh2

12rL4

q� 	
Relative error in ok (i.e. eo) Absolute mode error

Z ¼ 10�1 Z ¼ 10�6 Z ¼ 10�1 Z ¼ 10�6 Z ¼ 10�1 Z ¼ 10�6

1 9.712078861 9.869604401 1.1� 10�15 9.0� 10�16 3.0� 10�10 2.9� 10�10

2 37.15925549 39.47841760 2.7� 10�15 1.3� 10�14 1.7� 10�9 2.4� 10�9

3 78.41185419 88.82643961 9.5� 10�13 1.1� 10�15 2.2� 10�9 2.6� 10�9

4 129.3007567 157.9136704 0 1.6� 10�13 4.5� 10�9 2.5� 10�9

5 186.5185455 246.7401100 0 2.0� 10�14 8.3� 10�10 1.6� 10�9

6 247.7661888 355.3057584 1.2� 10�14 8.3� 10�15 4.6� 10�9 4.5� 10�9

7 311.5310273 483.6106156 8.0� 10�14 8.3� 10�12 5.9� 10�9 2.0� 10�9

8 376.8356055 631.6546816 2.1� 10�14 7.3� 10�13 7.8� 10�10 3.7� 10�9

9 443.0498935 799.4379564 3.2� 10�14 1.0� 10�14 5.2� 10�10 8.0� 10�9

10 509.7669406 986.9604399 7.8� 10�15 1.6� 10�12 4.6� 10�10 2.2� 10�9
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Table 2

Adaptively generated meshes for Examples 2–4

k Example ne Mesh points ðx�i =L; i ¼ 0; . . . ; neÞ

1 2 2 (0 0.798 1)

3 3 (0 0.466 0.932 1)

4 2 (0 0.625 1)

2 2 2 (0 0.542 1)

3 3 (0 0.378 0.692 1)

4 2 (0 0.415 1)

3 2 3 (0 0.404 0.786 1)

3 5 (0 0.272 0.466 0.662 0.938 1)

4 3 (0 0.310 0.845 1)

6 2 5 (0 0.224 0.444 0.662 0.874 1)

3 7 (0 0.152 0.308 0.436 0.578 0.714 0.886 1)

4 4 (0 0.155 0.360 0.650 1)

10 2 8 (0 0.138 0.276 0.414 0.550 0.686 0.820 0.954 1)

3 10 (0 0.108 0.232 0.336 0.434 0.544 0.642 0.752 0.874 0.976 1)

4 6 (0 0.095 0.210 0.350 0.525 0.745 1)

S. Yuan et al. / Journal of Sound and Vibration 303 (2007) 526–537 533
If there is no exact value available, ok is replaced by another reference value in the above equation. The
absolute mode errors were calculated as the maximum difference in cðxÞ and w(x)/L on the discrete mesh
points xi (i ¼ 0,1,y,ng) with the maximum exact value at any mesh point being set to unity and the
corresponding computed value at the same point also being set to unity. It can be seen that it is intrinsic in the
present method that it does not suffer from the shear-locking problem and results show that the accuracy
requirements are well satisfied.

Table 2 lists selected adaptively generated meshes for Examples 2–4. It shows the number of elements into
which the member was divided (ne) and gives the positions of the mesh points at the element boundaries
ðx�0;x

�
1; . . . ;x

�
ne
Þ. To obtain a comparator for the natural frequencies given by the present method for Examples

2 and 3, they were also solved by the exact dynamic stiffness method, using 5000 and 10,000 Timoshenko
beam elements of constant cross-section for which the constant rigidity and mass values were taken as the
original values at the centre of each element, see Table 3. It can be seen that for both of Examples 2 and 3 the
results from the present method agree very well with the results given by 10,000 uniform elements. It can also
be seen that for Example 2 there is agreement to all 10 significant figures presented with the values obtained by
parabolic extrapolation from the results for 5000 and 10,000 elements (using the reciprocal of the number of
elements as the abscissa, so that zero corresponds to an infinite number of elements), because the differences
between the 5000 and 10,000 element columns in Table 3 is almost exactly three times the differences between
the 10,000 element column and the final column, i.e. the present method. Similarly the results for Example 3
from the present method agree very well (almost up to the error tolerance of 10�8) with the results from 10,000
uniform elements and almost always agree to essentially all the significant figures presented with the results
extrapolated parabolically from the 5000 and 10,000 results.
6.3. Example 4. Buckling of a simply supported column

The exact critical buckling load and mode shape for the simply supported column defined by Fig. 1(d) are

lk ¼ 4k2p2
EI0

L2

vkðxÞ ¼ ð1þ x=LÞ sin
2kp

ð1þ x=LÞ

8>><
>>: ðk ¼ 1; 2; . . .Þ. (17)
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Table 3

Natural frequencies ok C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=rL2

q� �
of Examples 2 and 3

k Example 2 Example 3

No. of elements Present No. of elements Present

5000� 10,000� 5000� 10,000�

1 y3224 y3229 0.403323230 y0754 y0575 1.028940537

2 y3212 y3227 1.500443232 y9687 y9558 2.232669514

3 y4412 y4440 3.088794450 y7201 y7134 3.835177111

4 y8888 y8929 4.823808943 y7479 y7477 5.186177477

5 y8277 y8334 6.650868354 y5337 y5523 7.097895586

10 y5201 y5211 11.48605214 y1125 y1134 13.14941137

15 y3174 y3188 17.05733193 y9735 y9740 18.84929741

20 y1942 y1964 22.38951971 y4905 y4928 24.36024935

30 y6873 y6923 34.06846940 y2559 y2554 35.48552553

40 y6927 y6957 45.88256968 y6155 y6137 46.54186130

50 y4239 y4265 56.91524274 y1626 y2067 58.22702213

�Only the last 4 digits are given for these columns to aid comparison with those in the ‘present’ column to their right (shown bold); the

remaining digits are identical.

Table 4

Buckling loads and mode errors of simply supported column

k lkðCEI0=L2Þ Relative error in lk Absolute error of modes

1 39.47841761 1.6� 10�10 1.9� 10�10

2 157.9136704 1.9� 10�10 5.6� 10�10

4 631.6546816 7.0� 10�11 1.4� 10�10

6 1421.223034 5.3� 10�11 4.1� 10�10

8 2526.618727 4.8� 10�11 2.5� 10�10

10 3947.841760 1.9� 10�11 4.2� 10�10
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The first ten buckling loads and modes were computed using the method in this paper with the initial trial
value randomly set to l� ¼ 100ðEI0=L2Þ and with the member divided into ng ¼ 200 intervals of equal length
for rigidity value searching. Selected adaptively generated meshes obtained are shown in Table 2 and selected
ones of the first ten buckling loads are given in Table 4 along with the error of the present method compared
with the exact results of Eq. (18), with the absolute mode error calculated in the same way as for Example 1.
Clearly, the accuracy requirements were well satisfied.

6.4. Example 5. Buckling of an optimized clamped– clamped column

For a clamped–clamped column, the problem of determination of the optimal shape was first considered
analytically by Tadjbakhsh and Keller [11], using a single mode formulation with no cross-section constraints.
However, Olhoff and Rasmussen [12] discovered that the single mode result is not generally optimal, and
obtained a better solution based on a bimodal formulation. Their results were confirmed by the first author of
the present paper by using an ODE solver approach [13].

According to the definition of this problem, the cross-sections of this column are geometrically similar
and similarly oriented so that the moment of inertia I is related to the cross-sectional area A by I ¼ gA2 where
the constant g is a property of the cross-section shape. The column has volume V, length L and Young’s
modulus E, and is subjected to an axial compressive force, the value of which is Pk at the kth buckling load.
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The first symmetric mode

The first anti-symmetric mode

Fig. 2. Example 4. (a) Optimized clamped–clamped column showing the variation of a typical cross-section dimension to plotting

accuracy, so that A(x) varies as the square of this dimension. (b) Bimodal shapes obtained by the present method.

Table 5

Buckling loads of clamped–clamped column

lk

k Present method Ref. [12] ODE solver method [13]

1 52.35625427 52.3563 52.35625427

2 52.35625428 52.3563 52.35625427

3 95.70285107

4 175.5617089

5 275.2008589

6 332.8346468

7 426.0565157

8 547.2894105

9 694.7629409

10 814.9342154
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The dimensionless cross-sectional area a(x) and buckling loads lk are defined by

aðxÞ ¼ AðxÞL=V ; lk ¼ PkL4=ðEgV 2Þ, (18)

where the coordinate x (0pxp1) is non-dimensionalized by division by L.
This problem was revisited by using the method proposed in this paper. The optimized shape was calculated

in advance by using the ODE-solver method [13] with an error tolerance [9] of 0.5� 10�10 and is indicated,
without detail, in Fig. 2(a). The initial trial value of l was ‘randomly’ set to l* ¼ 100. During the computation
by the present method, it was found that the first two eigenvalues are very close and the algorithm
automatically shifted to the subspace iteration method instead of inverse iteration in solving Eq. (3) and
produced the first two solutions simultaneously with no difficulty. The computed results are listed in Table 5.
It is evident that the solutions agree very well with the comparator results shown for the first two eigenvalues,
with the very slight difference from the results of Ref. [12] being due to the adopted shape being presented to
the present method in a numerical form rather than a closed analytic one. Finally, the first two modal shapes
computed by the present method are shown in Fig. 2(b).
7. Concluding remarks

In this paper, the exact dynamic stiffness method (DSM) has been further extended to vibration of non-
uniform Timoshenko beams and buckling of non-uniform Euler members. For the method presented, the
following final remarks are made.
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7.1. Exactness

The word ‘exact’ can never be strictly applied to computer methods both because the computer works to a
finite accuracy and also because even precise analytical solutions often involve functions such as sine and
cosine which are evaluated from series. Therefore, ‘exact’ is used here to describe methods which achieve
machine accuracy less a very limited allowance for a normal amount of ill-conditioning. In this sense, because
the method presented is a numerical implementation of the exact DSM, it is an exact method because it uses a
standard adaptive ODE solver to compute dynamic stiffnesses and their derivatives to either a user-specified
accuracy or the maximum accuracy allowed by the computer. This contrasts with many other methods, e.g.
the extensively used FEM would very rarely (if ever) use, or possibly be able to use, sufficient elements for the
discretization errors (plus any ill-conditioning errors due to using very small elements) for its accuracy to ever
approach machine accuracy. Note too that the method presented, unlike FEM, allows the accuracy required
to be preset in data.

7.2. Efficiency

The efficiency of the proposed method depends on several factors. An important one is the efficiency of the
adopted ODE solver. So far as is known the solver used is one of the best to use but if a more efficient ODE
solver could be found it would raise the overall efficiency of the method. If very high accuracy is required the
method presented is manifestly more efficient than using an astronomically large number of finite elements,
which incidentally would probably need to be monitored carefully lest they cause ill-conditioning. As an
indication of the speed of the present method, the code used (which has not been optimized) took 2.413, 1.973,
21.250 and 20.850 s to solve Examples 1 (for Z ¼ 10�1 and 10�6), 2 and 3, respectively, when using an IBM
Notebook PC with a Pentium M 1.7GHz CPU.

7.3. Reliability

High reliability is achieved via a sophisticatedly designed algorithm. The use of a state-of-the-art ODE
solver guarantees the quality of the computed stiffnesses and their derivatives, even for challenging problems,
and the use of the W–W algorithm to bound the sought eigenvalues guarantees that no eigenvalues are missed.

7.4. Generality

The calculation of the dynamic stiffnesses and their derivatives by using an ODE solver is a general method
which can be easily extended to cover more general problems, including the three-dimensional frameworks briefly
discussed at the end of Section 1. Similarly, the mesh generation can be generalized to other problems, e.g. non-
uniform beams on non-uniform elastic foundations, as long as valid element length rules can be established.
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